Applications beyond QCD
A collection of links to lattice perturbation theory results for various applications beyond lattice QCD. These include: beyond the Standard Model physics applications; lattice gauge theories with gauge groups other than SU(3) or in fewer than four spacetime dimensions; and some more formal applications of perturbation theory to lattice theories.
Supersymmetry
- A. Feo, Two-loops Wess-Zumino model with exact supersymmetry on the lattice, (2013) [arXiv:1305.6473]
- S. Musberg, G. Münster, and S. Piemonte, Perturbative calculation of the clover term for adjoint Wilson fermions, (2013) [arXiv:1304.5741]
- S. Catterall et al., Perturbative renormalization of lattice N=4 super Yang-Mills theory, JHEP 1104 (2011) 074 [arXiv:1102.1725]
- T. Onogi and T. Takimi, Perturbative study of the supersymmetric lattice theory from matrix model, PoS(LATTICE 2005) 271 [arXiv:hep-lat/0510037]
- T. Onogi and T. Takimi, Perturbative study of the supersymmetric lattice theory from matrix model, Phys. Rev. D 72 (2005) 074504 [arXiv:hep-lat/0506014]
- M. Bonini and A. Feo, Exact lattice Ward-Takahashi identity for the N=1 Wess-Zumino model, Phys. Rev. D 71 (2005) 114512
- A. Feo, Supersymmetric Ward-Takahashi identity in 1-Loop lattice perturbation theory. I. general procedure, Phys. Rev. D 70 (2004) 054504 [arXiv:hep-lat/0305020]
and
T. Galla, G. Münster, and A. Vladikas, Comment on: ``The supersymmetric Ward-Takahashi identity in 1-Loop lattice perturbation theory. I. general procedure'' by A. Feo; hep-lat/0305020, (2003) [arXiv:hep-lat/0307014]
- F. Farchioni et al., SUSY Ward identities in 1-loop perturbation theory, Nucl. Phys. B (Proc. Suppl.) 106 (2002) 941 [arXiv:hep-lat/0110113]
- F. Farchioni et al., On the 1-loop lattice perturbation theory of the supersymmetric Ward identities, Nucl. Phys. B (Proc. Suppl.) 94 (2001) 791 [arXiv:hep-lat/0011030]
- Y. Taniguchi, One loop calculation of SUSY Ward-Takahashi identity on lattice with Wilson fermion, Phys. Rev. D 63 (2000) 014502 [arXiv:hep-lat/9906026]
- I. Montvay, Tuning to N = 2 supersymmetry in the SU(2) adjoint Higgs-Yukawa model, Nucl. Phys. B 445 (1995) 399
Non-zero temperature QCD
- O. Philipsen and L. Zeidlewicz, Cutoff effects of Wilson fermions on the QCD equation of state to O(g2), Phys. Rev. D 81 (2010) 077501 [arXiv:0812.1177]
- U.M. Heller, F. Karsch, and B. Sturm, Improved staggered fermion actions for QCD thermodynamics, Phys. Rev. D 60 (1999) 114502 [arXiv:hep-lat/9901010]
- P.N. Meisinger and M.C. Ogilvie, Effective action for finite temperature lattice gauge theories with dynamical fermions, Phys. Rev. D 52 (1995) 3024
- P.N. Meisinger and M.C. Ogilvie, An effective action for finite temperature QCD with fermions, Nucl. Phys. B (Proc. Suppl.) 42 (1995) 532 [arXiv:hep-lat/9412071]
- G. Boyd, The quark correlator at finite temperature, Nucl. Phys. B (Proc. Suppl.) 30 (1993) 335
- B. Petersson and T. Reisz, Polyakov loop correlations at finite temperature, Nucl. Phys. B 353 (1991) 757
All sorts of other models
2010s
- F. Niedermayer and P. Weisz, Massless sunset diagrams in finite asymmetric volumes, (2016) [arXiv:1602.03159]
- R. Lohmayer and R. Narayanan, Weak-coupling analysis of the single-site large-N gauge theory coupled to adjoint fermions, (2013) [arXiv:1305.1279]
- A. Hietanen and R. Narayanan, The large N limit of four dimensional Yang-Mills field coupled to adjoint fermions on a single site lattice, JHEP 1001 (2010) 079 [arXiv:0911.2449]
2000s
- K. Harada et al., Apparently non-invariant terms of nonlinear sigma models in lattice perturbation theory, (2009) [arXiv:0902.0665]
- L. Del Debbio et al., Higher representations on the lattice: perturbative studies, JHEP 0806 (2008) 007 [arXiv:0802.0891]
- L. Li and Y. Meurice, An example of optimal field cut in lattice gauge perturbation theory, Phys. Rev. D 71 (2005) 054509 [arXiv:hep-lat/0501023]
- P.M. Stevenson, Comparison of perturbative RG theory with lattice data for the 4d Ising model, Nucl. Phys. B 729 (2005) 542 [arXiv:hep-lat/0507038]
- O.Borisenko, S.Voloshin and M.Faber, Plaquette representation for 3D lattice gauge models: I. Formulation and perturbation theory, (2005) [arXiv:hep-lat/0508003]
- G. Burgio et al., Gauge theories on a 2+2 anisotropic lattice, Phys. Rev. D 67 (2003) 114502 [arXiv:hep-lat/0303005]
- J. Nishimura, M.A. Vazquez-Mozo, Lattice perturbation theory in noncommutative geometry and parity anomaly in 3D noncommutative QED, JHEP 0301 (2003) 075 [arxiv:hep-lat/021001]
- M. Lüscher, Lattice regularization of chiral gauge theories to all orders of perturbation theory, JHEP 0006 (2000) 028 [arXiv:hep-lat/0006014]
- W. Bock et al., Phase diagram and spectrum of gauge-fixed Abelian lattice gauge theory, Phys.Rev. D 62 (2000) 034507
1990s
- W. Bock, M. Golterman and Y. Shamir, Chiral fermions on the lattice through gauge fixing -- perturbation theory, Phys. Rev. D 58 (1998) 034501 [arXiv:hep-lat/9801018]
- W. Bietenholz,Perfect actions for scalar theories, Nucl. Phys. B (Proc. Suppl.) 63 (1998) 901
- G. Cella et al., Coulomb law in the pure gauge U(1) theory on a lattice, Phys. Rev. D 56 (1997) 3896
- F. Niedermayer, M. Niedermaier, and P. Weisz, Questionable and unquestionable in the perturbation theory of non-Abelian models, Phys. Rev. D 56 (1997) 2555
- R. Narayanan and U. Wolff, Two-loop computation of a running coupling in lattice Yang-Mills theory, Nucl. Phys. B 444 (1995) 425
- U. Wolff, Two-loop computation of a finite volume running coupling on the lattice, Nucl. Phys. B (Proc. Suppl.) 42 (1995) 291
- S. Aoki and R.B. Levien, Kaplan-Narayanan-Neuberger lattice fermions pass a perturbative test, Phys. Rev. D 51 (1994) 3790 [arXiv:hep-lat/9411137]
- S. Aoki and H. Hirose, Perturbative analysis for Kaplan's lattice chiral fermions, Phys. Rev. D 49 (1994) 2604 [arXiv:hep-lat/9309014]
- S. Caracciolo and A. Pelissetto, Lattice perturbation theory for O(N)-symmetric σ-models with general nearest-neighbour action (I). Conventional perturbation theory, Nucl. Phys. B 420 (1994) 141
- K. Kajantiea, K. Rummukainena, and M. Shaposhnikova, A lattice Monte Carlo study of the hot electroweak phase transition, Nucl. Phys. B 407 (1993) 356
- H. Kröger, R. Lafrance, and L. Marleau, QED vacuum polarization on a momentum lattice, Phys. Rev. D 46 (1992) 5540
- D. Bérubé et al., Axial anomaly on a momentum lattice, Phys. Rev. D 45 (1992) 1332
- D. Bérubé et al., Yang-Mills theory on a momentum lattice: Gauge invariance, chiral invariance, and no fermion doubling, Phys. Rev. D 43 (1991) 1385
- L. Lin et al., A U(1)L ⊗ U(1)R symmetric Yukawa model in the phase with spontaneously broken symmetry, Nucl. Phys. B 355 (1991) 511
- K. Farakos et al., U(1)L ⊗ U(1)R symmetric Yukawa model in the symmetric phase, Nucl. Phys. B 350 (1991) 474
- S. Aoki, Perturbative analysis of anomalous chiral QED, Phys. Rev. D 42 (1990) 2806
1980s
- S. Caracciolo et al., Renormalization of the energy-momentum tensor and the trace anomaly in lattice QED, Phys. Lett. B 228 (1989) 375
- S. Caracciolo et al., The energy-momentum tensor on the lattice: The scalar case, Nucl. Phys. B 309 (1988) 612
- I. Montvay, The sigma-model with Wilson lattice fermions, Nucl. Phys. B 307 (1988) 389
- I. Montvay, A chiral SU(2)L⊗SU(2)R gauge model on the lattice, Phys. Lett. B 199 (1987) 89
- G. Martinelli, G. Parisi, and R. Petronzio, Improving the lattice action near the continuum limit, Phys. Lett. B 114 (1982) 251
- V.F. Müller and W. Rühl, Small coupling (low temperature) expansions of nonabelian Yang-Mills fields on a lattice in temporal gauge, Ann. Phys. 133 (1981) 240
- J. Shigemitsu, J.B. Kogut, and D.K. Sinclair, Comparing O(N) and SU(N) x SU(N) spin systems in 1 + 1 dimensions to SU(N) gauge theories in 3 + 1 dimensions, Phys. Lett. B 100 (1981) 316
1970s
- J. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51 (1979) 659
- H.S. Sharatchandra, Continuum limit of lattice gauge theories in the context of renormalized perturbation theory, Phys. Rev. D 18 (1978) 2042
- A. Carroll et al., Lattice gauge theory calculations in 1 + 1 dimensions and the approach to the continuum limit, Phys. Rev. D 13 (1976) 2270
- T. Banks, L. Susskind, and J.B. Kogut, Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises, Phys. Rev. D 13 (1976) 1043